On the Poisson Equation for Metropolis-hastings Chains

نویسنده

  • ALEKSANDAR MIJATOVIĆ
چکیده

This paper defines an approximation scheme for a solution of the Poisson equation of a geometrically ergodic Metropolis-Hastings chain Φ. The scheme is based on the idea of weak approximation and gives rise to a natural sequence of control variates for the ergodic average Sk(F ) = (1/k) ∑k i=1 F (Φi), where F is the force function in the Poisson equation. The main results show that the sequence of the asymptotic variances (in the CLTs for the control-variate estimators) converges to zero and give a rate of this convergence. Numerical examples in the case of a double-well potential are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study

Here, we work on the problem of point estimation of the parameters of the Poisson-exponential distribution through the Bayesian and maximum likelihood methods based on complete samples. The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated using three methods, namely the Tierney Kadane approximation method, the importance sampling method and the Metrop...

متن کامل

4 General State Space Markov Chains and Mcmc Algorithms

Abstract. This paper surveys various results about Markov chains on general (noncountable) state spaces. It begins with an introduction to Markov chain Monte Carlo (MCMC) algorithms, which provide the motivation and context for the theory which follows. Then, sufficient conditions for geometric and uniform ergodicity, along with quantitative bounds on the rate of convergence to stationarity in ...

متن کامل

General state space Markov chains and MCMC algorithms

This paper surveys various results about Markov chains on general (non-countable) state spaces. It begins with an introduction to Markov chain Monte Carlo (MCMC) algorithms, which provide the motivation and context for the theory which follows. Then, sufficient conditions for geometric and uniform ergodicity are presented, along with quantitative bounds on the rate of convergence to stationarit...

متن کامل

A Metropolis-hastings Method for Linear Inverse Problems with Poisson Likelihood and Gaussian Prior

Poisson noise models arise in a wide range of linear inverse problems in imaging. In the Bayesian setting, the Poisson likelihood function together with a Gaussian prior yields a posterior density function that is not of a well known form and is thus difficult to sample from, especially for large-scale problems. In this work, we present a method for computing samples from posterior density func...

متن کامل

Methodology for inference on the Markov modulated Poisson process and theory for optimal scaling of the random walk Metropolis

Two distinct strands of research are developed: new methodology for inference on the Markov modulated Poisson process (MMPP), and new theory on optimal scaling for the random walk Metropolis (RWM). A novel technique is presented for simulating from the exact distribution of a continuous time Markov chain over an interval given the start and end states and the infinitesimal generator. This is us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016